基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
行人在众多场景中都存在多尺度变化问题,严重影响检测器的精度,为此设计卷积特征重建和通道注意力两种模块来增强对多尺度行人的检测效果.以原始输入的多尺度特征为基础融合重建多个特征金字塔,然后融合多个特征金字塔中的相同尺度特征,并学习每层特征的通道注意力权值来增加有效通道层权重,由此得到的特征才用于最后的检测.将这两种模块集成到RFBnet模型中,并改进模型损失函数用以优化对遮挡行人的检测效果.在Caltech-USA、INRIA和ETH三个数据集上的测试结果表明,新方法的准确率高于RFBnet和MS-CNN等一些多尺度方法,在不同尺度行人的测试子集上达到了最优的检测效果.
推荐文章
基于特征融合的多尺度窗口产品外观检测方法
机器视觉
质量检测
特征融合
多尺度滑动窗口
支持向量机
基于多特征的行人检测算法
行人检测
相位一致性特征
方向梯度直方图
局部二值模式算子
引入多尺度特征图融合的人脸关键点检测网络
深度学习
人脸关键点检测
热度图融合
关键点热度图
采用HOG特征和机器学习的 行人检测方法
行人检测
行人候选区域
梯度方向直方图
反向传播神经网络
Adaboost算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多尺度特征融合重建的行人检测方法
来源期刊 计算机工程与应用 学科 工学
关键词 行人检测 卷积神经网络 多尺度特征 遮挡处理
年,卷(期) 2021,(4) 所属期刊栏目 图形图像处理
研究方向 页码范围 176-182
页数 7页 分类号 TP39
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1912-0174
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (3)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(6)
  • 参考文献(1)
  • 二级参考文献(5)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
卷积神经网络
多尺度特征
遮挡处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导