基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以卷积神经网络为代表的深度学习技术推动神经网络在医学图像研究领域不断实现新突破.然而,平移不变性等理论假设限制了卷积神经网络在非欧氏空间数据中的表达能力,是医学图像深度学习技术亟待突破的瓶颈.图卷积技术不仅能够解决非欧氏空间数据的拓扑建模难题,还实现了空间特征提取,是深度学习技术全新的研究方向.本文对图卷积网络在医学图像领域的相关理论及其应用进行综述,旨在系统归纳和全面总结医学图像领域最新的图卷积理论、方法和实践,包括图结构视角下医学图像的专业采集、数据结构的剪枝转换以及特征聚类重构方法;图卷积网络的理论溯源,重要的网络架构和发展脉络;图卷积网络的优化方向和衍生出的跳跃连接、inception、图注意力等重要机制;图卷积网络在医学图像分割、疾病检测和图像重建等方面的实践应用.最后,提出了图卷积网络在医学图像分析领域仍亟待突破的瓶颈问题:1)多模态医学图像学习中,异构图的构建与学习任务的优化;2)特征重构和池化过程中,如何通过构图算法设计与神经架构搜索算法结合,以实现最优图结构的可学习过程转换;3)高质量图结构医学标注数据的大规模低成本生成与生成对抗网络的算法设计.随着人工智能技术的不断发展和医学影像规模的不断扩大,以图卷积为代表的深度学习方法必将在医疗辅助诊断领域取得更大的突破.
推荐文章
基于空间注意力与图卷积的多标签图像分类算法
图卷积网络
多标签图像分类
空间注意力
特征融合
多任务深度卷积网络的CT图像方向校正
CT图像
方向校正
深度卷积网络
多任务回归网络
联合加权聚合深度卷积特征的图像检索方法
图像检索
深度卷积特征
空间权重矩阵
通道权重向量
聚合
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 医学图像深度学习技术:从卷积到图卷积的发展
来源期刊 中国图象图形学报 学科
关键词 医学图像 深度学习 图表示学习 图神经网络(GNN) 图卷积网络(GCN)
年,卷(期) 2021,(9) 所属期刊栏目 综述|Review
研究方向 页码范围 2078-2093
页数 16页 分类号 TP391.4
字数 语种 中文
DOI 10.11834/jig.200666
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (1)
参考文献  (28)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(10)
  • 参考文献(10)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
医学图像
深度学习
图表示学习
图神经网络(GNN)
图卷积网络(GCN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导