钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
医学图像深度学习技术:从卷积到图卷积的发展
医学图像深度学习技术:从卷积到图卷积的发展
作者:
唐朝生
胡超超
孙君顶
司马海峰
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
医学图像
深度学习
图表示学习
图神经网络(GNN)
图卷积网络(GCN)
摘要:
以卷积神经网络为代表的深度学习技术推动神经网络在医学图像研究领域不断实现新突破.然而,平移不变性等理论假设限制了卷积神经网络在非欧氏空间数据中的表达能力,是医学图像深度学习技术亟待突破的瓶颈.图卷积技术不仅能够解决非欧氏空间数据的拓扑建模难题,还实现了空间特征提取,是深度学习技术全新的研究方向.本文对图卷积网络在医学图像领域的相关理论及其应用进行综述,旨在系统归纳和全面总结医学图像领域最新的图卷积理论、方法和实践,包括图结构视角下医学图像的专业采集、数据结构的剪枝转换以及特征聚类重构方法;图卷积网络的理论溯源,重要的网络架构和发展脉络;图卷积网络的优化方向和衍生出的跳跃连接、inception、图注意力等重要机制;图卷积网络在医学图像分割、疾病检测和图像重建等方面的实践应用.最后,提出了图卷积网络在医学图像分析领域仍亟待突破的瓶颈问题:1)多模态医学图像学习中,异构图的构建与学习任务的优化;2)特征重构和池化过程中,如何通过构图算法设计与神经架构搜索算法结合,以实现最优图结构的可学习过程转换;3)高质量图结构医学标注数据的大规模低成本生成与生成对抗网络的算法设计.随着人工智能技术的不断发展和医学影像规模的不断扩大,以图卷积为代表的深度学习方法必将在医疗辅助诊断领域取得更大的突破.
暂无资源
收藏
引用
分享
推荐文章
基于空间注意力与图卷积的多标签图像分类算法
图卷积网络
多标签图像分类
空间注意力
特征融合
多任务深度卷积网络的CT图像方向校正
CT图像
方向校正
深度卷积网络
多任务回归网络
联合加权聚合深度卷积特征的图像检索方法
图像检索
深度卷积特征
空间权重矩阵
通道权重向量
聚合
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
医学图像深度学习技术:从卷积到图卷积的发展
来源期刊
中国图象图形学报
学科
关键词
医学图像
深度学习
图表示学习
图神经网络(GNN)
图卷积网络(GCN)
年,卷(期)
2021,(9)
所属期刊栏目
综述|Review
研究方向
页码范围
2078-2093
页数
16页
分类号
TP391.4
字数
语种
中文
DOI
10.11834/jig.200666
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(10)
共引文献
(1)
参考文献
(28)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1986(1)
参考文献(0)
二级参考文献(1)
1998(2)
参考文献(1)
二级参考文献(1)
1999(2)
参考文献(0)
二级参考文献(2)
2007(2)
参考文献(1)
二级参考文献(1)
2008(1)
参考文献(1)
二级参考文献(0)
2009(1)
参考文献(1)
二级参考文献(0)
2010(2)
参考文献(0)
二级参考文献(2)
2012(1)
参考文献(0)
二级参考文献(1)
2013(3)
参考文献(2)
二级参考文献(1)
2014(2)
参考文献(1)
二级参考文献(1)
2015(1)
参考文献(1)
二级参考文献(0)
2016(2)
参考文献(2)
二级参考文献(0)
2017(1)
参考文献(1)
二级参考文献(0)
2018(2)
参考文献(2)
二级参考文献(0)
2019(10)
参考文献(10)
二级参考文献(0)
2020(3)
参考文献(3)
二级参考文献(0)
2021(2)
参考文献(2)
二级参考文献(0)
2021(2)
参考文献(2)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
医学图像
深度学习
图表示学习
图神经网络(GNN)
图卷积网络(GCN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
期刊文献
相关文献
1.
基于空间注意力与图卷积的多标签图像分类算法
2.
多任务深度卷积网络的CT图像方向校正
3.
联合加权聚合深度卷积特征的图像检索方法
4.
基于深度卷积神经网络的图像检索算法研究
5.
基于轻量图卷积增强嵌入学习的点击率预测模型
6.
利用卷积神经网络改进迭代深度学习算法的图像识别方法研究
7.
卷积神经网络在医学图像分割中的研究进展
8.
基于深度学习的医学图像分割研究进展
9.
采用无监督学习算法与卷积的图像分类模型
10.
基于深度学习的多模态医学图像融合方法研究进展
11.
结合迁移学习与深度卷积网络的心电分类研究
12.
深度卷积神经网络在放射治疗计划图像分割中的应用
13.
基于深度卷积稀疏自编码分层网络的人脸识别技术
14.
基于深度卷积神经网络的车标分类
15.
基于回归深度卷积网络的船舶图像与视频检测
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2021年第9期
中国图象图形学报2021年第8期
中国图象图形学报2021年第7期
中国图象图形学报2021年第6期
中国图象图形学报2021年第5期
中国图象图形学报2021年第4期
中国图象图形学报2021年第3期
中国图象图形学报2021年第2期
中国图象图形学报2021年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号