基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对推荐系统中用户评分数据稀疏所导致推荐结果不精确的问题,本文尝试将用户评分、信任关系和项目评论文本信息融合在概率矩阵分解方法中以缓解评分数据稀疏性问题.首先以共同好友数目及项目流行度改进皮尔逊用户偏好相似程度并将其作为用户间的直接信任值,然后考虑用户间信任传播过程中所有路径的影响构建新的信任网络;其次通过BERT预训练(Pre-training of Deep Bidirectional Transformers for Language Understanding)模型提取项目的评论文本向量,构造项目的评论文本特征矩阵;最后基于概率矩阵分解(Probabilistic Matrix Factorization,PMF)模型融合用户的评分数据、用户的信任关系以及项目的评论文本信息进行推荐.通过不断的理论分析并在真实的Yelp数据集上进行实验验证,均表明本文算法的有效性.
推荐文章
融合隐含信任度和项目关联度的矩阵分解推荐算法
推荐系统
协同过滤
社交网络
隐含信任度
项目关联度
矩阵分解
基于信任和概率矩阵分解的协同推荐算法研究
推荐系统
协同过滤
信任
数据稀疏
冷启动
矩阵分解
融合内容与矩阵分解的混合推荐算法
混合推荐
矩阵分解
冷启动
参数优化
局部结构
融合用户评论的矩阵分解推荐算法
矩阵分解
用户评论
主题模型
正则化项
推荐算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合信任关系与评论文本的矩阵分解推荐算法
来源期刊 小型微型计算机系统 学科
关键词 推荐算法 概率矩阵分解 BERT 直接信任 信任传播 评论文本
年,卷(期) 2021,(2) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithm Research
研究方向 页码范围 285-290
页数 6页 分类号 TP301
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.02.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (55)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(8)
  • 参考文献(2)
  • 二级参考文献(6)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐算法
概率矩阵分解
BERT
直接信任
信任传播
评论文本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导