针对推荐系统中用户评分数据稀疏所导致推荐结果不精确的问题,本文尝试将用户评分、信任关系和项目评论文本信息融合在概率矩阵分解方法中以缓解评分数据稀疏性问题.首先以共同好友数目及项目流行度改进皮尔逊用户偏好相似程度并将其作为用户间的直接信任值,然后考虑用户间信任传播过程中所有路径的影响构建新的信任网络;其次通过BERT预训练(Pre-training of Deep Bidirectional Transformers for Language Understanding)模型提取项目的评论文本向量,构造项目的评论文本特征矩阵;最后基于概率矩阵分解(Probabilistic Matrix Factorization,PMF)模型融合用户的评分数据、用户的信任关系以及项目的评论文本信息进行推荐.通过不断的理论分析并在真实的Yelp数据集上进行实验验证,均表明本文算法的有效性.