基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The rapid identification of radioactive sub-stances in public areas is crucial.However,traditional nuclide identification methods only consider information regarding the full energy peaks of the gamma-ray spectrum and require long recording times,which lead to long response times.In this paper,a novel identification method using the event mode sequence(EMS)information of tar-get radionuclides is proposed.The EMS of a target radionuclide and natural background radiation were established as two different probabilistic models and a decision function based on Bayesian inference and sequential testing was constructed.The proposed detection scheme individually processes each photon.When a photon is detected and accepted,the corresponding posterior probability distribution parameters are estimated using Bayesian inference and the decision function is updated.Then,value of the decision function is compared to preset detection thresholds to obtain a detection result.Experi-ments on different target radionuclides(137Cs and 60Co)were performed.The count rates of the regions of interest(ROI)in the backgrounds between[651,671],[1154,1186],and[1310,1350]keV were 2.35,5.14,and 0.57 CPS,respectively.The experimental results demonstrate that the average detection time was 6.0 s for 60Co(with an activity of 80400 Bq)at a distance of 60 cm from the detector.The average detection time was 7 s for 137Cs(with an activity of 131000 Bq)at a distance of 90 cm from the detector.The results demonstrate that the proposed method can detect radioactive substances with low activity.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Identification of bacterial fossils in marine source rocks in South China
South China
Excellent marine source rocks
Bacterial fossil
Sedimentary environment
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Fast nuclide identification based on a sequential Bayesian method
来源期刊 核技术(英文版) 学科
关键词
年,卷(期) 2021,(12) 所属期刊栏目 NUCLEAR ELECTRONICS AND INSTRUMENTATION
研究方向 页码范围 116-127
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
核技术(英文版)
月刊
1001-8042
31-1559/TL
16开
上海市800-204信箱 联合编辑部
4-647
1989
eng
出版文献量(篇)
2225
总下载数(次)
0
总被引数(次)
2765
论文1v1指导