基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对变工况条件下轴承故障数据无法大量获取以及诊断困难的问题,提出了基于变分模态分解和卷积神经网络的轴承故障诊断方法,使用稳态工况获取的数据训练,能对变工况下的数据实现有效诊断.首先对轴承振动信号进行变分模态分解,以获得有限带宽的固有模态函数;然后构建卷积神经网络模型,采用优化技术提高模型适应性,实现对固有模态函数的自适应特征提取和分类;最后使用台架试验获得的滚动轴承故障数据进行验证,并与深度残差网络和支持向量机进行对比.结果表明,该模型对变工况数据的诊断/识别率达到100%/98.86%,高于对比模型的测试结果,有效实现了变工况轴承故障诊断.
推荐文章
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
使用改进残差神经网络的滚动轴承变工况故障诊断方法
故障诊断
滚动轴承
变工况
残差神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于VMD和卷积神经网络的变工况轴承故障诊断方法
来源期刊 计量学报 学科
关键词 计量学 滚动轴承 复合型故障诊断 变工况 卷积神经网络 状态识别
年,卷(期) 2021,(7) 所属期刊栏目
研究方向 页码范围 892-897
页数 6页 分类号 TB936
字数 语种 中文
DOI 10.3969/j.issn.1000-1158.2021.07.10
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (35)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(18)
  • 参考文献(1)
  • 二级参考文献(17)
2018(10)
  • 参考文献(2)
  • 二级参考文献(8)
2019(7)
  • 参考文献(5)
  • 二级参考文献(2)
2020(2)
  • 参考文献(0)
  • 二级参考文献(2)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量学
滚动轴承
复合型故障诊断
变工况
卷积神经网络
状态识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
论文1v1指导