基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Light field microscopy (LFM) has been widely used for recording 3D biological dynamics at camera frame rate. However, LFM suffers from artifact contaminations due to the illness of the reconstruction problem via na?ve Richardson–Lucy (RL) deconvolution. Moreover, the performance of LFM significantly dropped in low-light conditions due to the absence of sample priors. In this paper, we thoroughly analyze different kinds of artifacts and present a new LFM technique termed dictionary LFM (DiLFM) that substantially suppresses various kinds of reconstruction artifacts and improves the noise robustness with an over-complete dictionary. We demonstrate artifact-suppressed reconstructions in scattering samples such as Drosophila embryos and brains. Furthermore, we show our DiLFM can achieve robust blood cell counting in noisy conditions by imaging blood cell dynamic at 100 Hz and unveil more neurons in whole-brain calcium recording of zebrafish with low illumination power in vivo.
推荐文章
基于Artifact状态变迁的射孔数据协同流程模型研究
Artifact状态变迁
射孔数据协同流程
业务状态规则库
Artifact信息模型
动态离散区间系统的Robust稳定度
离散区间系统
区间矩阵
Schur稳定度
Robust稳定度
动态离散区间系统的Robust稳定度[Ⅱ]
离散区间系统
Robust稳定度
矩阵测度
特征值
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 DiLFM: an artifact-suppressed and noise-robust light-field microscopy through dictionary learning
来源期刊 光:科学与应用(英文版) 学科
关键词
年,卷(期) 2021,(8) 所属期刊栏目 Articles
研究方向 页码范围 1546-1557
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
光:科学与应用(英文版)
双月刊
2095-5545
22-1404/O4
吉林省长春市东南湖大路3888号
eng
出版文献量(篇)
762
总下载数(次)
0
论文1v1指导