基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前采用短文本分类的方法几乎都使用词向量,不管是机器学习还是深度学习本质上都是对数字的处理.将文本汉字转换成计算机可识别的数字信息是词向量的作用.ERNIE是百度提出主要针对中文设计的词向量模型.将ERNIE词向量与深金字塔卷积神经网络相融合,对中文类新闻文本标题进行文本分类处理.通过实验比较,ERNIE词向量与深金字塔卷积神经网络相结合的短文本分类模型具有较高的分类精度.
推荐文章
基于自身特征扩展的短文本分类方法
短文本
稀疏
信号弱
扩展
离散度
相关度
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
基于关键词相似度的短文本分类方法研究
词向量
特征选择
短文本分类
特征权重
集成学习在短文本分类中的应用研究
短文本分类
机器学习
深度学习
集成学习
Bagging
Stacking
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ERNIE-DPCNN的短文本分类研究
来源期刊 电脑编程技巧与维护 学科
关键词 短文本分类 深度学习 ERNIE词向量 深金字塔卷积神经网络
年,卷(期) 2021,(4) 所属期刊栏目 软件研发与应用
研究方向 页码范围 26-27,81
页数 3页 分类号
字数 语种 中文
DOI 10.3969/j.issn.1006-4052.2021.04.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (4)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(3)
  • 参考文献(1)
  • 二级参考文献(2)
2020(2)
  • 参考文献(1)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短文本分类
深度学习
ERNIE词向量
深金字塔卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑编程技巧与维护
月刊
1006-4052
11-3411/TP
大16开
北京市海淀区长春桥路5号六号楼1209室
82-715
1994
chi
出版文献量(篇)
14554
总下载数(次)
80
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导