基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
社交网络用户的指数型增长,导致用户在网络中难以找到适合自己的好友.提出一种基于多目标检测算法SSD和时序模型的微博好友推荐算法BSBT-FR,首先利用SSD对搜集到的用户图像进行信息提取,再利用时序模型在时间维度上对提取到的信息做进一步处理,然后利用JS散度公式计算用户间的相似度,最后与基于用户个人信息得出的相似度进行加权式融合,得出综合的用户相似度,使用Top-K思想进行用户推荐.在新浪微博用户数据集上的实验表明,参考因素的权重取值会影响推荐结果,BSBT-FR算法与只考虑用户属性或用户图像的算法相比,精准度更高.
推荐文章
基于时序模型和矩阵分解的推荐算法
推荐算法
概率矩阵分解
时序行为
行为预测
基于用户标签的微博推荐算法
微博推荐算法
用户标签
TextRank排序方法
微博列表
效应函数
生命周期
一种改进的新浪微博好友推荐算法
好友推荐
微博社区结构
权威用户
兴趣相似度
信任度
基于社区划分的多线程潜在好友推荐算法
多线程
社区划分
核心关系子网
标签传播
好友推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SSD和时序模型的微博好友推荐算法
来源期刊 计算机工程与科学 学科
关键词 社交网络 目标检测 好友推荐 时序模型
年,卷(期) 2021,(7) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 1291-1298
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1007-130X.2021.07.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (116)
共引文献  (64)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(20)
  • 参考文献(1)
  • 二级参考文献(19)
2014(17)
  • 参考文献(4)
  • 二级参考文献(13)
2015(12)
  • 参考文献(2)
  • 二级参考文献(10)
2016(14)
  • 参考文献(3)
  • 二级参考文献(11)
2017(15)
  • 参考文献(1)
  • 二级参考文献(14)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社交网络
目标检测
好友推荐
时序模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导