基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
疲劳驾驶和不安全驾驶行为是引起交通事故的主要原因,随着智能交通技术的发展,利用深度学习算法进行驾驶行为检测已成为研究的热点之一.在卷积神经网络和长短时记忆神经网络的基础上,结合注意力机制改进网络结构,提出一种混合双流卷积神经网络算法,空间流通道采用卷积神经网络提取视频图像的空间特征值,以空间金字塔池化代替均值池化,统一了特征图的尺度变换,时间流通道采用SSD算法计算视频序列相邻两帧光流图像,用于人眼等脸部小目标的检测,再进行图像特征融合与分类,在LFW数据集和自建数据集中进行了实验,结果表明本方法的人脸识别和疲劳驾驶的检测准确率分别高于其他方法1.36和2.58个百分点以上.
推荐文章
基于长短时记忆网络的仿真系统数据故障诊断方法
故障诊断
长短时网络
神经网络
数据分析
长短时记忆网络的自由体操视频自动描述方法
长短时记忆网络
注意力机制
自由体操
自动描述
基于长短时记忆神经网络的水库洪水预报
洪水预报
长短时记忆神经网络
预见期
训练速度
白盆珠水库
对抗长短时记忆网络的跨语言 文本情感分类方法
文本情感
跨语言
对抗
长短时记忆网络
共享特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进长短时记忆网络的驾驶行为检测方法研究
来源期刊 汽车工程 学科
关键词 安全驾驶 卷积神经网络 长短时记忆 单步检测 人脸识别 疲劳驾驶检测
年,卷(期) 2021,(8) 所属期刊栏目
研究方向 页码范围 1203-1209,1262
页数 8页 分类号
字数 语种 中文
DOI 10.19562/j.chinasae.qcgc.2021.08.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (83)
共引文献  (48)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(13)
  • 参考文献(0)
  • 二级参考文献(13)
2017(12)
  • 参考文献(3)
  • 二级参考文献(9)
2018(8)
  • 参考文献(3)
  • 二级参考文献(5)
2019(7)
  • 参考文献(2)
  • 二级参考文献(5)
2020(4)
  • 参考文献(3)
  • 二级参考文献(1)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
安全驾驶
卷积神经网络
长短时记忆
单步检测
人脸识别
疲劳驾驶检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导