基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This review deals with restricted Boltzmann machine(RBM)under the light of statistical physics.The RBM is a classical family of machine learning(ML)models which played a central role in the development of deep learning.Viewing it as a spin glass model and exhibiting various links with other models of statistical physics,we gather recent results dealing with mean-field theory in this context.First the functioning of the RBM can be analyzed via the phase diagrams obtained for various statistical ensembles of RBM,leading in particular to identify a compositional phase where a small number of features or modes are combined to form complex patterns.Then we discuss recent works either able to devise mean-field based learning algorithms;either able to reproduce generic aspects of the learning process from some ensemble dynamics equations or/and from linear stability arguments.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
高可扩展格子Boltzmann方法
格子Boltzmann方法
并行计算
可扩展
MPI
利用格子Boltzmann方法研究水泥替置
格子Boltzmann方法
水泥替置
黏度
密度
流人速率
速度分布
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Restricted Boltzmann machine:Recent advances and mean-field theory
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 TOPICAL REVIEW—Machine learning in statistical physics
研究方向 页码范围 1-25
页数 25页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abd160
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
论文1v1指导