基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人工智能目前在诸多领域均得到较好应用,然而通过对抗样本会使神经网络模型输出错误的分类.研究提升神经网络模型鲁棒性的同时如何兼顾算法运行效率,对于深度学习在现实中的落地使用意义重大.针对上述问题,本文提出一种基于条件对抗生成网络的对抗样本防御方法Defense-CGAN.首先使用对抗生成网络生成器根据输入噪声与标签信息生成重构图像,然后计算重构前后图像均方误差,对比选取重构图像馈送到分类器进行分类从而去除对抗性扰动,实现对抗样本防御,最后,在MNIST数据集上进行大量实验.实验结果表明本文提出的防御方法更加具备通用性,能够防御多种对抗攻击,且时间消耗低,可应用于对时间要求极其苛刻的实际场景中.
推荐文章
基于对抗生成网络的时序脑功能网络预测方法
对抗生成网络
时序链路预测
图卷积
功能磁共振
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于条件生成对抗网络的漫画手绘图上色方法
漫画
手绘图
上色
深度学习
条件生成对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于条件对抗生成网络的对抗样本防御方法
来源期刊 计算机与现代化 学科
关键词 对抗样本 神经网络 对抗样本防御 条件对抗生成网络 深度学习
年,卷(期) 2021,(7) 所属期刊栏目 人工智能|ARTIFICIAL INTELLIGENCE
研究方向 页码范围 65-70
页数 6页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1006-2475.2021.07.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
对抗样本
神经网络
对抗样本防御
条件对抗生成网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导