基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像生成是虚拟现实技术(virtual reality,VR)中的重要技术手段,针对传统图片生成方法需要大量的数据集进行训练,且生成的图片轮廓不清晰等问题,采用基于深度卷积神经网络和生成对抗网络来实现图片的生成.为了保证生成图片的真实性和完整性,在图片生成阶段引入变分自编码器,通过编码器获取到输入图片数据的均值和方差,将图片对应的隐藏变量转化为标准的高斯分布,然后通过生成器生成新的图片;在识别阶段,采用深度卷积神经网络训练判别器,将生成的新的图片输入到已经训练好的判别器中,运用梯度下降法计算损失函数,不断优化整体系统模型.通过对MNIST图像数据集的训练,实验表明该方法能生成质量较高的图片,它生成的图像无法用肉眼与真实数据区分开,并且在不同网络条件下都有较高的识别率.该方法提高了MNIST生成模型的技术水平.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
基于生成对抗网络的遮挡表情识别
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积生成对抗网络的图像生成
来源期刊 计算机技术与发展 学科
关键词 生成对抗网络 深度卷积网络 变分自编码器 图像生成 梯度下降法
年,卷(期) 2021,(4) 所属期刊栏目 图形与图像
研究方向 页码范围 86-92
页数 7页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.04.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (92)
共引文献  (456)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(11)
  • 参考文献(3)
  • 二级参考文献(8)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(7)
  • 参考文献(5)
  • 二级参考文献(2)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
深度卷积网络
变分自编码器
图像生成
梯度下降法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导