钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
大学学报期刊
\
重庆理工大学学报(自然科学版)期刊
\
带质心的K最近邻增强模糊最小最大神经网络的集成方法
带质心的K最近邻增强模糊最小最大神经网络的集成方法
作者:
陈鹏
赵建成
余肖生
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
E-CFMM
集成方法
超盒收缩
弱分类器
质心
摘要:
在分类任务中,传统的模糊最小最大神经网络及其变体在训练网络的时候没有考虑超盒内部训练数据的分布情况,并且考虑扩展系数的问题也不是很充分,导致每次训练新数据集都要重新选择最优的扩展系数.因此,提出了一种带质心的K最近邻增强模糊最小最大神经网络的集成方法.在该方法中,一方面,每个超盒都带有质心,用来描述之前训练的样本在该超盒的大体分布情况,并且在扩展规则及收缩方面考虑了样本距离超盒质心的因素;另一方面,使用5个带质心的K最近邻增强模糊最小最大神经网络作为弱分类器,每个分类器设置不同的扩展系数,当该方法训练完后,将得出的离散属性值作为随机森林的训练集,最后,使用测试样本验证网络的分类性能.实验结果表明:提出的方法在准确率、精准率、召回率以及F-score等方面大部分的结果高于传统的FMMN及其变体的结果,该方法有效地克服了FMMN的准确性过于依赖扩展系数的问题.
暂无资源
收藏
引用
分享
推荐文章
基于核独立分量分析的模糊核聚类神经网络集成方法
核独立分量分析
特征提取
模糊核聚类
选择性聚类集成
基于最近邻与神经网络融合模型的软测量建模方法
软测量
动态建模
过程系统
最近邻算法
门限循环单元神经网络
基于改进最近邻聚类的机械手神经网络逆控制
RBF神经网络
神经网络逆控制
机械手
最近邻聚类算法
解耦
基于广义回归网络的动态权重回归型神经网络集成方法研究
神经网络集成
BP网络
动态权重
广义回归神经网络
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
带质心的K最近邻增强模糊最小最大神经网络的集成方法
来源期刊
重庆理工大学学报(自然科学版)
学科
关键词
E-CFMM
集成方法
超盒收缩
弱分类器
质心
年,卷(期)
2021,(9)
所属期刊栏目
信息· 计算机
研究方向
页码范围
116-129
页数
14页
分类号
TP183
字数
语种
中文
DOI
10.3969/j.issn.1674-8425(z).2021.09.015
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(12)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1980(1)
参考文献(1)
二级参考文献(0)
1992(1)
参考文献(1)
二级参考文献(0)
1993(1)
参考文献(1)
二级参考文献(0)
2007(1)
参考文献(1)
二级参考文献(0)
2013(1)
参考文献(1)
二级参考文献(0)
2015(1)
参考文献(1)
二级参考文献(0)
2016(2)
参考文献(2)
二级参考文献(0)
2017(2)
参考文献(2)
二级参考文献(0)
2018(1)
参考文献(1)
二级参考文献(0)
2020(1)
参考文献(1)
二级参考文献(0)
2021(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
E-CFMM
集成方法
超盒收缩
弱分类器
质心
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
主办单位:
重庆理工大学
出版周期:
月刊
ISSN:
1674-8425
CN:
50-1205/T
开本:
出版地:
重庆市九龙坡区杨家坪
邮发代号:
创刊时间:
语种:
chi
出版文献量(篇)
7998
总下载数(次)
17
总被引数(次)
41083
期刊文献
相关文献
1.
基于核独立分量分析的模糊核聚类神经网络集成方法
2.
基于最近邻与神经网络融合模型的软测量建模方法
3.
基于改进最近邻聚类的机械手神经网络逆控制
4.
基于广义回归网络的动态权重回归型神经网络集成方法研究
5.
基于K最近邻算法的网络不良信息过滤系统研究
6.
基于模糊K最近邻和证据理论的增量式超文本分类方法
7.
一种自适应k-最近邻算法的研究
8.
一种新的选择性神经网络集成方法及其在PTA中的应用
9.
基于集成模糊神经网络的容差模拟电路故障诊断方法
10.
基于改进的K-最近邻算法的病毒检测方法
11.
改进的基于神经网络的信息最大化语音增强算法
12.
基于加权K近邻和卷积神经网络的高光谱图像分类
13.
基于集成神经网络与模糊逻辑融合的稳压器泄漏监测方法
14.
基于最近邻规则的神经网络训练样本选择方法
15.
模糊神经网络技术综述
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
重庆理工大学学报(自然科学版)2022
重庆理工大学学报(自然科学版)2021
重庆理工大学学报(自然科学版)2020
重庆理工大学学报(自然科学版)2019
重庆理工大学学报(自然科学版)2018
重庆理工大学学报(自然科学版)2017
重庆理工大学学报(自然科学版)2016
重庆理工大学学报(自然科学版)2015
重庆理工大学学报(自然科学版)2014
重庆理工大学学报(自然科学版)2013
重庆理工大学学报(自然科学版)2012
重庆理工大学学报(自然科学版)2011
重庆理工大学学报(自然科学版)2010
重庆理工大学学报(自然科学版)2009
重庆理工大学学报(自然科学版)2008
重庆理工大学学报(自然科学版)2007
重庆理工大学学报(自然科学版)2006
重庆理工大学学报(自然科学版)2005
重庆理工大学学报(自然科学版)2004
重庆理工大学学报(自然科学版)2003
重庆理工大学学报(自然科学版)2002
重庆理工大学学报(自然科学版)2001
重庆理工大学学报(自然科学版)2021年第9期
重庆理工大学学报(自然科学版)2021年第8期
重庆理工大学学报(自然科学版)2021年第7期
重庆理工大学学报(自然科学版)2021年第6期
重庆理工大学学报(自然科学版)2021年第5期
重庆理工大学学报(自然科学版)2021年第4期
重庆理工大学学报(自然科学版)2021年第3期
重庆理工大学学报(自然科学版)2021年第2期
重庆理工大学学报(自然科学版)2021年第10期
重庆理工大学学报(自然科学版)2021年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号