基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着电子商务网站的快速发展,针对不同用户进行适合其个性化推荐的需求也不断增加.其中,产品视觉外观是用户选择的关键因素之一,因此视觉特征在推荐模型中有重要的作用.同时,文献表明在个性化推荐算法中图像数据的一个较小扰动可能会较大降低推荐准确度和模型鲁棒性.针对这一问题,本文首先验证了在产品美学因子特征中加入对抗性扰动会对模型鲁棒性产生影响;其次提出了一种改进的ADCFA(Adversarial Dynamic Collaborative Filtering Model with Aesthetic Feature)推荐算法,通过在视觉混合特征参数上加入微小扰动使推荐性能下降,再使用对抗性学习方法进行模型训练,从而提高推荐系统鲁棒性;最后,还设计了一种改进的ADCFA-SGD算法用于求解模型所需的参数.通过亚马逊数据集上的实验结果表明,基于对抗性学习的个性化推荐算法性能得到明显改善,同时也提高了模型鲁棒性.
推荐文章
一种结合用户可信度与相似度的鲁棒性推荐算法
协同过滤
托攻击
用户可信度
相似度
鲁棒性算法
一种提高数字水印鲁棒性的算法研究
数字水印
纠错码
小波变化
鲁棒性
一种鲁棒非平衡极速学习机算法
极速学习机
不平衡数据集
基于核的可能性模糊C-均值聚类
神经网络
一种鲁棒视频抠图算法
抠图
视频抠图
随机行走
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种利用对抗性学习提高推荐鲁棒性的算法
来源期刊 小型微型计算机系统 学科
关键词 个性化推荐 对抗性学习 视觉特征 美学因子 鲁棒性
年,卷(期) 2021,(10) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithms Research
研究方向 页码范围 2079-2084
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.10.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
个性化推荐
对抗性学习
视觉特征
美学因子
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导