基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高道路环境下目标检测的准确率和实时性,提出一种基于YOLOv3的改进检测算法.通过深度可分离卷积模块减少模型计算量,提高模型的实时性;采用K-Means++聚类算法代替原来的K-Means算法生成本数据集所需的先验锚点框,解决K-Means算法受初始点选取的影响较大,聚类结果不稳定的问题;在YOLOv3的多尺度预测网络中引入SENet(squeeze-and-excitation networks),加强网络对特征的学习能力;改进位置损失函数,解决使用IoU(intersection over union)度量时存在无法反映预测框与真实框重合度大小、无法优化IoU为零等问题;利用DIoU-NMS(基于Distance-IoU的非极大值抑制)去除冗余框,减少错误抑制,提高检测精度.实验结果表明,改进算法相对于原算法在检测耗时降低的同时,对5类常见目标检测的准确率均有提升.
推荐文章
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
自适应边缘优化的改进YOLOV3目标识别算法
目标检测
零件识别
卷积神经网络
YOLOV3
PSO
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
一种基于改进Yolov3的弹载图像多目标检测方法
弹载图像
目标检测
YOLOv3
位置损失
快速NMS
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进YOLOv3算法在道路目标检测中的应用
来源期刊 计算机技术与发展 学科
关键词 目标检测 YOLOv3 深度可分离卷积 SENet DIoU-NMS算法
年,卷(期) 2021,(8) 所属期刊栏目 应用前沿与综合
研究方向 页码范围 118-123
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.08.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (45)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(11)
  • 参考文献(1)
  • 二级参考文献(10)
2018(11)
  • 参考文献(0)
  • 二级参考文献(11)
2019(6)
  • 参考文献(2)
  • 二级参考文献(4)
2020(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
YOLOv3
深度可分离卷积
SENet
DIoU-NMS算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导