基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于机器学习算法识别恶意网页时恶意网页样本收集困难的问题,提出了一种基于生成对抗网络(GAN)的扩展恶意网页样本数据集的方法(WS-GAN),使用少量的原始样本数据训练生成对抗网络,利用生成器模拟生成网页样本.同时在原有生成对抗网络的结构中加入了多个判别器:全局判别器判别整体样本的真伪,控制生成样本整体的质量;各特征判别器判别其对应类别特征数据的真伪,控制生成样本细节部分的质量.实验结果表明,WS-GAN生成的网页特征样本可用于恶意网页分类器的训练,并且其生成样本的质量优于条件生成对抗网络和条件变分自编码器生成样本的质量.
推荐文章
基于生成对抗网络的恶意域名训练数据生成
恶意域名
DGA
生成对抗网络
检测
分类
面向Deep Web数据自动抽取的模板生成方法
Deep,Web
数据抽取
模板生成
文法推断
面向路径的测试数据生成框架及应用
软件测试
测试数据自动生成
面向路径的测试
迭代松弛法
面向新概念学习的图像描述生成模型
图像描述生成
注意力机制
卷积神经网络
新概念
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向恶意网页训练数据生成的GAN模型
来源期刊 计算机工程与应用 学科
关键词 恶意网页识别 恶意网页特征 机器学习 生成对抗网络 多判别器
年,卷(期) 2021,(6) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 124-130
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1912-0295
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (141)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(12)
  • 参考文献(2)
  • 二级参考文献(10)
2018(8)
  • 参考文献(4)
  • 二级参考文献(4)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
恶意网页识别
恶意网页特征
机器学习
生成对抗网络
多判别器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导