基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对桥梁裂缝固有特征及检测过程的局限性,引入基于卷积神经网络的YOLOv3单阶段目标检测算法,并对YOLOV3网络的多尺度预测模块进行改进,充分利用浅层特征,提升小裂缝检测精度.通过聚类算法对数据集进行聚类,得到适用于桥梁裂缝特征的先验框尺寸.数据集方面引入生成对抗网络对桥梁裂缝数据集进行扩增.实验结果表明,在相同数据集和迭代次数下,改进YOLOv3网络裂缝检测精度可达0.9302,比原YOLOv3提高0.0137.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
基于卷积神经网络的桥梁裂缝检测与识别
图像处理
桥梁裂缝
Raspberry Pi
卷积神经网络
检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的桥梁裂缝检测方法
来源期刊 计算机工程与设计 学科
关键词 卷积神经网络 生成对抗网络 桥梁裂缝 目标检测 YOLOv3
年,卷(期) 2021,(8) 所属期刊栏目 智能技术|Intelligent Technology
研究方向 页码范围 2366-2372
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.16208/j.issn1000-7024.2021.08.036
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (106)
共引文献  (22)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(14)
  • 参考文献(0)
  • 二级参考文献(14)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(9)
  • 参考文献(1)
  • 二级参考文献(8)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(5)
  • 参考文献(4)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
生成对抗网络
桥梁裂缝
目标检测
YOLOv3
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
论文1v1指导