基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在分析高光谱图像特性和稀疏表示理论的基础上,构建了Gabor冗余字典.采用基于正交匹配追踪的稀疏分解算法,实现了高光谱图像的稀疏表示.采用Matlab软件进行仿真,实验结果表明,与正交小波变换基相比,Gabor冗余字典具有更强的稀疏表示能力.
推荐文章
基于Gabor特征的稀疏表示纹理分割研究
稀疏表示
字典学习
D-KSVD
Gabor
基于多任务联合稀疏表示的高光谱图像分类算法
多任务学习
稀疏表示
高光谱图像
图像分类
基于字典优化的稀疏表示的视频镜头分类
稀疏表示
字典优化
视频镜头分类
基于Gabor感知多成份字典的图像稀疏表示算法研究
稀疏表示
视觉感知
几何结构
Gabor感知多成份字典
匹配追踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Gabor字典的高光谱图像稀疏表示研究
来源期刊 微型电脑应用 学科
关键词 高光谱图像 稀疏表示 Gabor字典 正交匹配追踪
年,卷(期) 2021,(8) 所属期刊栏目 基金项目|FUND PROJECT
研究方向 页码范围 1-5
页数 5页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1007-757X.2021.08.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (11)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
稀疏表示
Gabor字典
正交匹配追踪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导