基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
生成对抗网络(GAN)用于低剂量CT(LDCT)图像降噪具有一定的性能优势,成为近年CT图像降噪领域新的研究热点.不同剂量的LDCT图像中噪声和伪影分布的强度发生变化时,GAN网络降噪性能不稳定,网络泛化能力较差.为了克服这一缺陷,该文首先设计了一个编解码结构的噪声水平估计子网,用于生成不同剂量LD-CT图像对应的噪声图,并用原始输入图像与之相减来初步抑制噪声;其次,在主干降噪网络中,采用GAN框架,并将生成器设计为多路编码的U-Net结构,通过博弈对抗实现网络结构优化,进一步抑制CT图像噪声;最后,设计了多种损失函数来约束不同功能模块的参数优化,进一步保障了LDCT图像降噪网络的性能.实验结果表明,与目前流行算法相比,所提出的降噪网络能够在保留LDCT图像原有重要信息的基础上,取得较好的降噪效果.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法
来源期刊 电子与信息学报 学科
关键词 图像降噪 生成对抗网络 低剂量CT U-Net 噪声水平
年,卷(期) 2021,(8) 所属期刊栏目 图像与智能信息处理|Image and Intelligent Information Processing
研究方向 页码范围 2404-2413
页数 10页 分类号 TN911.73|TP391
字数 语种 中文
DOI 10.11999/JEIT200591
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像降噪
生成对抗网络
低剂量CT
U-Net
噪声水平
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
论文1v1指导