基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
语言模型的建立对挖掘句子内部语义信息有着直接的影响,为了提高中文命名实体识别率,字的语义表示是关键所在.针对传统的中文命名实体识别算法没有充分挖掘到句子内部的隐藏信息问题,该文利用LSTM提取经过大规模语料预训练生成的字向量特征,同时将词向量预测矩阵传入到字向量特征提取阶段,通过矩阵运算融合为词向量特征,并进一步利用CNN提取词语之间的空间信息,将其与得到的词向量特征整合到一起输入语言模型XLnet(Generalized autoregressive pretraining for language understanding)中,然后经过BiGRU-CRF输出最优标签序列,提出了CAW-XLnet-BiGRU-CRF网络框架.并与其他的语言模型作了对比分析,实验结果表明,该框架解决了挖掘内部隐藏信息不充分问题,在《人民日报》1998年1月份数据集上的F1值达到了95.73%,能够较好地应用于中文命名实体识别任务.
推荐文章
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
基于中文维基百科的命名实体消歧方法
命名实体消歧
词义消歧
中文维基百科
中文信息处理
基于联合模型的中文嵌套命名实体识别
嵌套命名实体识别
序列化标注模型
联合模型
感知器算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于XLnet语言模型的中文命名实体识别
来源期刊 计算机工程与应用 学科
关键词 命名实体识别 词向量 XLnet 语言模型
年,卷(期) 2021,(18) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 156-162
页数 7页 分类号 TP391.1
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2005-0355
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (15)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(17)
  • 参考文献(0)
  • 二级参考文献(17)
2019(6)
  • 参考文献(3)
  • 二级参考文献(3)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
命名实体识别
词向量
XLnet
语言模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导