基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文章针对铝材表面缺陷识别原始算法精度低与提取突出特征能力弱的问题,提出一种改进的YOLOv4算法.首先,为提高对小目标缺陷的检测能力,改进了多尺度预测,增强更浅层的细粒度特征信息融合;其次,对铝材标注数据样本采用K-means聚类,获取更适合缺陷目标的先验框.实验结果表明,在检测速度基本不变的前提下,改进YOLOv4算法的平均精度达到95.02%,比原始的YOLOv4算法提高了1.42%,比YOLOv3提高了2.34%,比Faster R-CNN提高了11.48%.
推荐文章
基于改进YOLOV4模型的交通标志识别研究
交通标志识别
高清街景图像
注意力机制
增强感受野
改进 YOLOv4 的混凝土建筑裂缝检测算法
裂缝检测
目标检测
YOLOv4
多尺度特征融合
基于改进YOLOv5的飞行员异常行为识别方法
YOLOv5
飞行员异常行为识别
航空安全
目标检测
数据增强
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进YOLOv4算法的铝材表面缺陷识别方法研究
来源期刊 现代信息科技 学科 工学
关键词 铝材表面缺陷 YOLOv4 多尺度预测 K-means算法
年,卷(期) 2021,(23) 所属期刊栏目 计算机技术|Computer Technology
研究方向 页码范围 96-99,103
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.19850/j.cnki.2096-4706.2021.23.025
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铝材表面缺陷
YOLOv4
多尺度预测
K-means算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导