作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在工地实际施工中,由于工人未佩戴安全帽而时常发生安全事故,基于此现象提出了一种基于YOLOV3的安全帽检测算法.实验结果表明:YOLOV3算法对佩戴安全帽的准确率达到90.6%,对未佩戴安全帽的准确率达到89.5%,检测速率为23fps.
推荐文章
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于暗通道和改进YOLOv3的雾天车辆检测算法
雾天车辆检测
暗通道去雾算法
YOLOv3
K-means
先验框
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 YOLOV3算法的安全帽检测
来源期刊 电子世界 学科
关键词
年,卷(期) 2021,(16) 所属期刊栏目 探索与观察
研究方向 页码范围 37-38
页数 2页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
电子世界
半月刊
1003-0522
11-2086/TN
大16开
北京市
2-892
1979
chi
出版文献量(篇)
36164
总下载数(次)
96
总被引数(次)
46655
论文1v1指导