原文服务方: 湖南大学学报(自然科学版)       
摘要:
为了提高风电功率预测准确性,提出一种基于频率游程判别法和变分模态分解(VMD)残差修正的风电功率超短期预测模型.采用变分模态分解将原始风电功率序列分解,得到一系列不同中心频率的子序列,再利用序列之差提取残差序列,残差序列继承原始序列噪声分量与分解被屏蔽的真实分量,呈现波动性大,非线性复杂和不平稳的特点,采用t-SSALSTM模型并结合天气特征进行预测.利用频率游程判别法把子序列划分为低频分量类和高频分量类:低频分量呈现线性平稳的特点,采用自适应t分布麻雀搜索算法(t-SSA)优化自回归滑动平均模型(ARIMA)预测;高频分量具有波动性大且复杂的特点,采用t-SSA优化长短时记忆神经网络(LSTM)进行预测.将不同序列的预测结果线性叠加得到风电功率预测结果 .将该模型应用于国内某风电发电厂的风电功率预测中,试验结果表明,该模型能有效提高预测精度.
推荐文章
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
基于自回归滑动平均模型的风电功率预测
风电功率
自回归滑动平均模型
风电预测
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于思维进化算法的风电功率预测研究
思维进化算法
风电功率
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于游程判别法和VMD残差修正的风电功率预测
来源期刊 湖南大学学报(自然科学版) 学科
关键词 风电功率 长短时记忆神经网络 自回归滑动平均模型 残差 麻雀搜索算法
年,卷(期) 2022,(8) 所属期刊栏目 电气与信息工程
研究方向 页码范围 128-137
页数 9页 分类号 TM715
字数 语种 中文
DOI 10.16339/j.cnki.hdxbzkb.2022232
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电功率
长短时记忆神经网络
自回归滑动平均模型
残差
麻雀搜索算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导