基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了对机场起飞容量及飞机全部出动时间进行预测,构建了基于ACO优化BP神经网络的机场跑道起飞容量预测模型.分析了机场跑道容量的含义及其影响因素,利用飞参提取软件将影响因素的具体数值进行提取;依据BP神经网络的特点将其引入到机场跑道起飞容量预测中,为了弥补BP神经网络的缺点,利用ACO对网络进行优化,最终建立了基于ACO优化BP神经网络的机场跑道起飞容量预测模型,并与标准BP神经网络的预测结果进行对比,结果表明优化后的网络各项误差都不同程度的减小40%~60%,优化后的网络提高了模型的精度.利用优化后的模型分析了飞机质量、气温、气压、风速与起飞跑道占用时间与起飞容量的关系,并对某机场保障飞机起飞容量与出动时间进行了评估,得到飞机质量、气压、纵向风速与起飞容量大致呈线性关系,气温与起飞容量大致呈非线性关系,最后得到该机场的总出动时间与起飞跑道容量,可以更准确的评估机场保障能力.
推荐文章
基于蚁群算法优化BP神经网络的政务云网络态势预测研究
政务云
主动防御
BP神经网络
蚁群算法
态势预测
预测精度
蚁群算法选择神经网络参数的网络入侵检测
网络安全
神经网络
参数优化
蚁群算法
入侵检测分类器
基于蚁群优化算法的神经网络训练的研究
蚁群优化算法
神经网络
均方误差
基于蚁群算法神经网络的煤自燃难易着火活化能预测
蚁群算法
神经网络
自然发火
着火活化能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群算法优化的神经网络技术在跑道起飞容量预测中的应用
来源期刊 国防交通工程与技术 学科 航空航天
关键词 起飞容量 跑道占用时间 BP神经网络 蚁群算法
年,卷(期) 2022,(1) 所属期刊栏目 研究与设计
研究方向 页码范围 6-11
页数 6页 分类号 V355
字数 语种 中文
DOI 10.13219/j.gjgyat.2022.01.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
起飞容量
跑道占用时间
BP神经网络
蚁群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国防交通工程与技术
双月刊
1672-3953
13-1333/U
大16开
河北省石家庄市北二环东路17号石家庄铁道学院内
18-349
2003
chi
出版文献量(篇)
2219
总下载数(次)
1
总被引数(次)
5594
论文1v1指导