作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为整体预测未来电力负荷变化趋势,提出一种基于经验模态分解和深度神经网络协作的短时电力负荷预测方法.首先为削弱原始负荷序列的非平稳特性,利用经验模态分解算法对原始负荷序列进行分解,得到各时序分量.在此基础上,构建各分量的深度神经网络预测模型,将分量的预测结果进行重构得到短时电力负荷预测曲线.利用某电厂短时负荷数据对模型的预测效果进行验证,得到其预测结果的平均绝对误差、均方根误差、平均绝对百分比误差分别为402.951 8、588.945 1、0.042 6.对比仿真进一步表明,同等条件下,基于经验模态分解和深度神经网络协作的短时电力负荷预测方法相较于单一的深度神经网络预测方法,在效果上精度更高,可用于对短时电力负荷的预测.
推荐文章
交通流量经验模态分解与神经网络短时预测方法
短时交通流量
经验模态分解
人工神经网络
预测
基于Elman神经网络的电力负荷预测模型研究
Elman神经网络
预测模型
电力负荷
仿真
基于MEA-Elman神经网络的电力日负荷预测
日负荷预测
思维进化算法
优化
MEA-Elman神经网络
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种经验模态分解与深度神经网络协作的短时电力负荷预测方法
来源期刊 西北民族大学学报(自然科学版) 学科 工学
关键词 电力负荷预测 非平稳特性 经验模态分解 深度神经网络
年,卷(期) 2022,(1) 所属期刊栏目 数理科学和化学|Mathematics Science and Chemistry
研究方向 页码范围 5-12
页数 8页 分类号 TM715
字数 语种 中文
DOI 10.3969/j.issn.1009-2102.2022.01.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力负荷预测
非平稳特性
经验模态分解
深度神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西北民族大学学报(自然科学版)
季刊
1009-2102
62-1188/N
大16开
兰州市西北新村1号
1980
chi
出版文献量(篇)
1696
总下载数(次)
3
总被引数(次)
5175
论文1v1指导