作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在极限学习机的非侵入式负荷识别算法中,由于输入权值和隐含层阈值的随机产生容易导致误判,鉴于此,提出了一种改进的遗传算法优化极限学习机方法.对遗传算法中选择算子进行改进,改进方法为求解出个体的适应度值,并按从小到大的顺序完成排序,将排完序的种群等分成4份,按照比例从4份中择优组成新种群,对新种群中剩余个体再从适应度较大的部分中择优;结合爬山法获得优化后的权值和阈值,构建优化极限学习机网络对负荷进行识别;利用MATLAB进行仿真验证,验证结果表明:优化后算法与未优化算法相比,负荷识别的准确率提高了约7.41%,体现了更优的分类性能,证明了该算法对负荷识别的有效性.
推荐文章
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于极限学习机的乳房形态识别
乳房形态
乳房识别
极限学习机
文胸
密度峰值快速聚类算法
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测
极限学习机
混沌纵横交叉
粒子群算法
预测精度
短期负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化极限学习机的非侵入式负荷识别
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 非侵入式 负荷识别 极限学习机 遗传算法
年,卷(期) 2022,(2) 所属期刊栏目
研究方向 页码范围 24-29
页数 6页 分类号 TM64
字数 语种 中文
DOI 10.16055/j.issn.1672-058X.2022.0002.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非侵入式
负荷识别
极限学习机
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导