基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高红外舰船图像显著性检测精度,同时降低参数量,提出一种轻量型红外舰船显著性检测模型.该模型针对红外图像缺乏颜色、纹理等细节特征的特点,从以下三个方面进行轻量化设计:在骨干网络设计方面,将视觉几何组网络(visual geometry group,VGG)各层的通道数减少一半作为骨干网络,以减少冗余的特征;为了进一步减少模型参数量,在前两个低层卷积模块中引入一种轻量型的线性瓶颈模块(linear bottleneck,LB)替换传统卷积模块;提出一种新的提取全局特征能力更强的轻量型的高层线性瓶颈模块(high-level linear bottleneck,HLLB)替换后3个高层传统卷积模块,并且使用自适应平均池化提取高层特征作为全局特征以得到更丰富的上下文信息.针对红外数据集缺少的问题,构建一个红外舰船数据集IRShip,包括1002幅图像.试验结果表明:该算法能够有效实现红外舰船目标的显著性检测,并且通过与其他7种常用的显著性检测模型对比,本研究提出的模型可以在大幅减少参数量的情况下有效提升红外舰船显著性目标检测的性能.
推荐文章
基于全卷积神经网络和多核学习的显著性检测
显著性检测
深度学习
全卷积神经网络
多核学习
监督学习
基于卷积神经网络和语义相关的协同显著性检测
协同显著性检测
深度学习
卷积神经网络
图像组语义相关类
基于全卷积神经网络的遥感图像海面目标检测
YOLOv3
全卷积神经网络
遥感图像
目标检测
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于轻量型卷积神经网络的海面红外显著性目标检测方法
来源期刊 山东大学学报(工学版) 学科 工学
关键词 卷积神经网络 红外舰船 显著性检测 轻量化模块 全局特征提取
年,卷(期) 2022,(2) 所属期刊栏目 机器学习与数据挖掘|Machine Learning & Data Mining
研究方向 页码范围 41-49
页数 9页 分类号 TP18
字数 语种 中文
DOI 10.6040/j.issn.1672-3961.0.2021.352
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
红外舰船
显著性检测
轻量化模块
全局特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导