基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
低速率分布式拒绝服务攻击针对网络协议自适应机制中的漏洞实施攻击,对网络服务质量造成了巨大威胁,具有隐蔽性强、攻击速率低和周期性的特点.现有检测方法存在检测类型单一和识别精度低的问题,因此提出了一种基于混合深度学习的多类型低速率DDoS攻击检测方法.模拟不同类型的低速率DDoS攻击和5G环境下不同场景的正常流量,在网络入口处收集流量并提取其流特征信息,得到多类型低速率DDoS攻击数据集;从统计阈值和特征工程的角度,分别分析了不同类型低速率DDoS攻击的特征,得到了40维的低速率DDoS攻击有效特征集;基于该有效特征集采用CNN-RF混合深度学习算法进行离线训练,并对比该算法与LSTM-LightGBM和LSTM-RF算法的性能;在网关处部署CNN-RF检测模型,实现了多类型低速率DDoS攻击的在线检测,并使用新定义的错误拦截率和恶意流量检测率指标进行了性能评估.结果 显示,在120 s的时间窗口下,所提方法能够在线检测出4种类型的低速率DDoS攻击,包括Slow Headers攻击、Slow Body攻击、Slow Read攻击和Shrew攻击,错误拦截率达到11.03%,恶意流量检测率达到96.22%.结果 表明,所提方法能够显著降低网络入口处的低速率DDoS攻击流量强度,并在实际环境中部署和应用.
推荐文章
一种可靠检测低速率DDoS攻击的异常检测系统
分布式拒绝服务
低速率攻击
入侵检测
网络安全
TCP
基于随机森林分类模型的DDoS攻击检测方法
随机森林
数据流信息熵
分布式拒绝服务
检测
基于全局网络PCA的DDoS攻击检测方法
分布式拒绝服务攻击
全局网络主成分分析
OD矩阵
分布式检测
SDN环境下基于机器学习算法的DDoS攻击检测模型
软件定义网络
分布式拒绝服务
支持向量机
K均值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合深度学习的多类型低速率DDoS攻击检测方法
来源期刊 网络与信息安全学报 学科 工学
关键词 多类型 低速率DDoS攻击 混合深度学习 特征分析 攻击检测
年,卷(期) 2022,(1) 所属期刊栏目 专栏:安全感知与检测方法|Topic: Security Awareness and Detection Method
研究方向 页码范围 73-85
页数 13页 分类号 TP393
字数 语种 中文
DOI 10.11959/j.issn.2096-109x.2022001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多类型
低速率DDoS攻击
混合深度学习
特征分析
攻击检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络与信息安全学报
双月刊
2096-109X
10-1366/TP
16开
北京市丰台区成寿路11号邮电出版大厦8层
2015
chi
出版文献量(篇)
525
总下载数(次)
6
总被引数(次)
1380
论文1v1指导