基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高分辨率遥感影像复杂地物分类的问题,提出了人工特征工程与深度神经网络相结合的地物分类方法.通过纹理与结构等人工设计特征提取构建多尺度特征图,采用特征图和原始图像合并构建的高维图集合作为网络输入,最大程度地丰富了输入信息量,同时增强了纹理、 尺度等有利特征在网络训练过程中的主导作用.根据全卷积网络端到端的像素级分类思想,借鉴并改进DeepLab v3网络的结构设计,实现了一站式的遥感地物分类.实验结果表明,相对于采用原始图像直接作为网络输入,多尺度特征图与原始图结合的方法可以有效地凸显地物中纹理与结构的描述能力,较好地提升地物分类准确度;同时相对于传统神经网络进行图片分类的方法,设计的基于多尺度特征图集合的方法在遥感地物分类任务中具有更好的抗干扰性与准确性.
推荐文章
深度学习在遥感影像分类中的研究进展
深度置信网
卷积神经网络
栈式自动编码器
遥感影像分类
深度学习
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
词袋模型在高分遥感影像地物分类中的应用研究
高分遥感影像
词袋模型
地物分类
视觉词典
地物特征提取
样本表达
基于深度迁移学习的城市高分遥感影像分类
分类
卷积神经网络
深度学习
遥感影像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征图集合的遥感影像深度学习地物分类研究
来源期刊 无线电工程 学科 工学
关键词 高分辨率 遥感 地物分类 深度学习 语义分割 多尺度特征图 全卷积网络
年,卷(期) 2022,(4) 所属期刊栏目 测控遥感与导航定位|TT&C, Remote Sensing and Navigation & Positioning
研究方向 页码范围 630-637
页数 8页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1003-3106.2022.04.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分辨率
遥感
地物分类
深度学习
语义分割
多尺度特征图
全卷积网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线电工程
月刊
1003-3106
13-1097/TN
大16开
河北省石家庄市174信箱215分箱
18-150
1971
chi
出版文献量(篇)
5453
总下载数(次)
12
总被引数(次)
20875
论文1v1指导