基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对多源聚合下同时对齐域不变特征较困难而造成分类精度不高的问题,提出基于自监督任务的多源无监督域适应法.该方法引入旋转、水平翻转和位置预测3个自监督辅助任务,通过伪标签性、语义信息的一致性对无标签数据进行自适应的对齐优化.构建新的优化损失函数,减少多域公共类别的分类差异.针对类别不均衡的问题,基于少样本大权重的原则,定义动态权重参数,提高模型的分类性能.在公开的Office-31、Office-Caltech102种基准数据集上,与现有的主流方法进行实验对比.实验结果表明,在类别均衡、不均衡2种情况下,分类精度最高可以提高6.8%.
推荐文章
基于鉴别模型和对抗损失的无监督域自适应方法
深度学习
无监督
域自适应
生成对抗网络(GAN)
辅助分类任务
模型参数自适应迁移的多源域适应
多源域适应
模型参数自适应迁移
隐私保护
聚类
基于能量源的安全监督"四步法"应用探讨
能量源
四步法
危险识别
安全监督
安全管理
基于数据密度的半监督自训练分类算法
半监督学习
自训练
密度
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自监督任务的多源无监督域适应法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 自监督任务 类别不均衡 语义信息 权重 域自适应
年,卷(期) 2022,(4) 所属期刊栏目 计算机技术、信息工程|Computer Technology, Information Engineering
研究方向 页码范围 754-763
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2022.04.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自监督任务
类别不均衡
语义信息
权重
域自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导