基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了得到更好的图像评价指标,均方误差损失是大多数现有的与深度学习方法结合的图像超分辨率技术都在使用的目标优化函数,但大多数算法构建出来的图像因严重丢失高频信息和模糊的纹理边缘而不能达到视觉感受的需求.针对上述问题,本文提出融合感知损失的广泛激活的非常深的残差网络的超分辨率模型,通过引入感知损失、对抗损失,并结合平均绝对误差组成新的损失函数,通过调整不同损失项的权重对损失函数进行优化,提高了对低分率图像的特征重构能力,高度还原图像缺失的高频信息.本文选取峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity,SSIM)两个国际公认的评判指标作为客观评判标准,更换数据集进行实验分析、结果对比,在主观视觉上直观观察效果,结果从不同角度证明本文方法性能较对比模型有所提升,证明了引入感知损失后,模型更好地构建了低分辨率图的纹理细节,可以获得更好的视觉体验.
推荐文章
基于深度学习的辐射图像超分辨率重建方法
辐射图像
超分辨率重建
深度学习
全局重建和位置块残差补偿的人脸图像超分辨率算法
人脸图像
超分辨率
残差补偿
位置块
基于深度学习的图像超分辨率重建技术的研究
人工智能
深度学习
超分辨率
制造工艺
基于深度学习的单图像超分辨率重建研究综述
单图像超分辨率重建
深度学习
密集卷积网络
生成式对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于广泛激活深度残差网络的图像超分辨率重建
来源期刊 智能系统学报 学科 工学
关键词 深度学习 超分辨率 广泛激活 感知损失 特征重构 峰值信噪比 结构相似度 视觉体验
年,卷(期) 2022,(2) 所属期刊栏目 吴文俊人工智能科学技术奖论坛|Forum of Recipients of Wu Wenjun Artificial Intelligence Science and Technology Award
研究方向 页码范围 440-446
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.11992/tis.202106023
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
超分辨率
广泛激活
感知损失
特征重构
峰值信噪比
结构相似度
视觉体验
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导