基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高图像去雾的性能,提出结合大气散射模型生成对抗网络的去雾算法.算法在pix2pix GAN基础上进行改进,将网络的生成器改进成双解码器结构,通过双解码器分别生成无雾图像和透射率图,并结合大气散射模型还原雾图像,以进一步提高图像分解的质量.在马尔科夫判别器结构中,采用反向学习机制代替随机裁剪机制,以有效降低因采用随机裁剪算法而导致的判断结果不准确的概率.在原有的损失函数上,加入雾霾损失函数,提高图像转化的质量.在STOS和NYU数据集上进行消融实验和对比实验.大量实验表明所提出方法在PSNR和SSIM指标上比原算法Pix2pix GAN有所提高,且均优于现有去雾算法,复原图像具有清晰度高、噪声低、纹理丰富的优点.
推荐文章
基于生成对抗网络的图像去雾算法
图像去雾
生成对抗学习
联合优化
卷积神经网络
暗通道先验
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合大气散射模型的生成对抗网络去雾算法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 生成对抗网络 匹配图像 去雾 反向学习 大气散射模型
年,卷(期) 2022,(2) 所属期刊栏目 计算机与控制工程|Computer and Control Engineering
研究方向 页码范围 225-235
页数 11页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2022.02.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
匹配图像
去雾
反向学习
大气散射模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导