基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 针对目前基于生成式的步态识别方法采用特定视角的步态模板转换、识别率随视角跨度增大而不断下降的问题,本文提出融合自注意力机制的生成对抗网络的跨视角步态识别方法.方法 该方法的网络结构由生成器、视角判别器和身份保持器构成,建立可实现任意视角间步态转换的网络模型.生成网络采用编码器—解码器结构将输入的步态特征和视角指示器连接,进而实现不同视角域的转换,并通过对抗训练和像素级损失使生成的目标视角步态模板与真实的步态模板相似.在判别网络中,利用视角判别器来约束生成视角与目标视角相一致,并使用联合困难三元组损失的身份保持器以最大化保留输入模板的身份信息.同时,在生成网络和判别网络中加入自注意力机制,以捕捉特征的全局依赖关系,从而提高生成图像的质量,并引入谱规范化使网络稳定训练.结果 在CASIA-B(Chinese Academy of Sciences'Institute of Automation gait database——dataset B)和OU-MVLP(OU-ISIR gait database-multi-view large population dataset)数据集上进行实验,当引入自注意力模块和身份保留损失训练网络时,在CASIA-B数据集上的识别率有显著提升,平均rank-1准确率比GaitGAN(gait generative adversarial network)方法高15%.所提方法在OU-MVLP大规模的跨视角步态数据库中仍具有较好的适用性,可以达到65.9%的平均识别精度.结论 本文方法提升了生成步态模板的质量,提取的视角不变特征更具判别力,识别精度较现有方法有一定提升,能较好地解决跨视角步态识别问题.
推荐文章
生成对抗网络图像类别标签跨模态识别系统设计
生成对抗网络
图像类别标签
跨模态识别
系统设计
卷积神经网络
训练模型
使用孪生注意力机制的生成对抗网络的研究
深度学习
生成对抗网络(GAN)
生成模型
对抗学习
注意力机制
一种基于自注意力机制的文本图像生成对抗网络
文本生成图像
生成对抗网络
自注意力机制
深度学习
多注意力机制下自愈人脸表情识别
人脸表情识别多
注意力机制
自愈
不确定性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合自注意力机制的生成对抗网络跨视角步态识别
来源期刊 中国图象图形学报 学科 工学
关键词 机器视觉 步态识别 跨视角 自注意力 生成对抗网络(GANs)
年,卷(期) 2022,(4) 所属期刊栏目 图像分析和识别|Image Analysis and Recognition
研究方向 页码范围 1097-1109
页数 13页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
步态识别
跨视角
自注意力
生成对抗网络(GANs)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
论文1v1指导