基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一.针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的佩戴进行检测.在YOLOv5的主干网络中添加坐标注意力机制(coordinate attention),该机制将位置信息嵌入到通道注意力当中,使网络可以在更大区域上进行注意.将特征融合模块中原有特征金字塔模块替换成加权双向特征金字塔(BiFPN)网络结构,实现高效的双向跨尺度连接和加权特征融合.在自制安全帽数据集上实验结果表明,改进的YOLOv5模型平均精度达到了95.9%,相比于YOLOv5模型,平均精度提高了5.1个百分点,达到了在复杂环境下对小目标和密集目标检测的要求.
推荐文章
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
基于改进YOLOv5的电厂人员绝缘手套佩戴检测
绝缘手套
YOLOv5s
自校准卷积
注意力机制
激活函数
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
改进 YoloV5 的行人检测算法
目标检测
行人遮挡检测
随机擦除
Res2Net
注意力机制
Confluence
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 引入注意力机制的YOLOv5安全帽佩戴检测方法
来源期刊 计算机工程与应用 学科 工学
关键词 安全帽佩戴检测 YOLOv5算法 加权双向特征金字塔 坐标注意力机制
年,卷(期) 2022,(9) 所属期刊栏目 工程与应用|Engineering and Applications
研究方向 页码范围 303-312
页数 10页 分类号 TP391.41
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2112-0242
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
安全帽佩戴检测
YOLOv5算法
加权双向特征金字塔
坐标注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导