原文服务方: 湖南大学学报(自然科学版)       
摘要:
为了更好地获取电池储能系统当前的运行状态,提出了基于神经网络融合的电池储能系统SOC估计方法 .首先,对比分析了前馈(BP)、门控循环单元(GRU)和长短时记忆(LSTM)神经网络算法的优劣,BP计算时间较短,LSTM对时序数据估计精度较高;然后,利用KL散度、皮尔逊相关系数和灰色关联度分析了不同输入参量和SOC的相关程度,并和LSTM估计结果相比对,筛选出对电池储能系统SOC影响较大的特征参量;最后,应用经验模态分解算法将SOC数据分解为多个分量,利用样本熵将分量聚合为高低两个频段,进而应用BP、LSTM神经网络算法分频段估计,和单一策略相比,该方法在提高SOC估计精度的同时,减少了计算时间.
推荐文章
基于LSTM循环神经网络的电池SOC预测方法
锂离子电池
荷电状态(SOC)
电动汽车
长短期记忆(LSTM)
循环神经网络
基于DEPSO-RBF神经网络的锌银电池SOC估计
电池容量
径向基函数
神经网络
差分进化粒子群优化算法
基于神经网络的电池SOC估算及优化方法
锂离子电池
SOC
神经网络
粒子群算法
RMSProp
基于神经网络与UKF结合的锂离子电池组SOC估算方法
锂离子电池组
动力能源
无迹卡尔曼滤波器
神经网络
高级车辆仿真器
荷电状态
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 电池储能系统SOC神经网络融合估计方法
来源期刊 湖南大学学报(自然科学版) 学科
关键词 电池储能系统 SOC融合估计 相关性分析 经验模态分解 样本熵
年,卷(期) 2024,(10) 所属期刊栏目 电气与信息工程
研究方向 页码范围 35-44
页数 10页 分类号
字数 语种 中文
DOI 10.16339/j.cnki.hdxbzkb.2023235
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2024(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电池储能系统
SOC融合估计
相关性分析
经验模态分解
样本熵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导