原文服务方: 发电技术       
摘要:
为快速准确地获取火电厂锅炉炉膛温度场在线监测信息,提出了一种基于深度神经网络(deep neural network,DNN)的声学层析成像(acoustic tomography,AT)温度场重建算法。对测量值进行归一化处理后,结合主成分分析(principal component analysis,PCA)降维,构建全连接网络区别峰型,分别搭建DNN与BP神经网络对归一化慢度值及其最值进行预测,最后重建温度场分布。采用该方法对4种典型的温度场模型进行了仿真,结果表明:DNN算法的重建质量优于Tikhonov正则化算法与共轭梯度算法,重建图像的平均相对误差和均方根误差分别小于0.36%和0.85%。
推荐文章
基于SA-ELM的声学层析成像温度分布重建算法
声学层析成像
温度分布测量
模拟退火
极限学习机
算法
数值模拟
实验验证
基于数据驱动的卷积神经网络电容层析成像图像重建
卷积神经网络
电容层析成像
图像重建
颗粒浓度分布
基于主成分分析的BP神经网络长期预报模型
主成分分析
学习矩阵
BP神经网络
改进Landweber电阻层析成像图像重建算法
电阻层析成像
不适定性
图像重建
灵敏度矩阵
条件数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主成分分析和深度神经网络的声学层析成像 温度分布重建
来源期刊 发电技术 学科 工学
关键词 火电厂 电站锅炉 温度场 声学层析成像(AT) 深度神经网络(DNN) 主成分分析(PCA)
年,卷(期) 2024,(3) 所属期刊栏目
研究方向 页码范围 119-126
页数 8页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2024(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
火电厂
电站锅炉
温度场
声学层析成像(AT)
深度神经网络(DNN)
主成分分析(PCA)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
发电技术
双月刊
2096-4528
33-1405/TK
大16开
1979-01-01
chi
出版文献量(篇)
2875
总下载数(次)
0
总被引数(次)
10204
论文1v1指导