原文服务方: 计算技术与自动化       
摘要:
目前深度学习方法在遥感影像变化检测方面取得了较大的进步,然而现有的遥感影像变化检测方法仍然以全监督网络为主,其网络性能严重依赖标签数据的数量和质量。为此,提出了一种基于均值教师模型联合多级扰动的半监督遥感影像变化检测网络(UniMTCD-Net)。首先,将不同性质的强扰动分离到不同的分支分别进行学习并约束一致性,形成多样化的扰动空间,避免了单分支学习困难的问题,从而有效提升对无标签数据的利用效率;其次,采用均值教师模型,不仅扩展了教师模型生成的伪标签和学生模型输出的强预测之间的差异,同时教师模型参数通过指数移动平均(EMA)更新的方式,使得伪标签的生成更加准确。实验结果表明,与主流半监督方法相比,UniMTCD-Net具有更好的检测性能,尤其在5%的标签训练数据下检测性能更加优秀,进一步验证了UniMTCD-Net在遥感影像变化检测中的有效性和优越性。
推荐文章
遥感影像变化检测方法研究
遥感影像
监督分类
非监督分类
变化检测
基于遥感影像的变化检测技术
变化检测
图像配准
遥感影像
Harris算子
基于Xception模型的遥感影像场景变化检测
场景分类
变化检测
简单线性迭代聚类
迁移学习
Xception
基于假设检验的遥感影像变化检测
变化检测
假设检验
NDVI
像斑
结果
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于均值教师模型联合 多级扰动的半监督遥感影像变化检测
来源期刊 计算技术与自动化 学科 工学
关键词 变化检测;半监督;一致性;均值教师模型
年,卷(期) 2024,(4) 所属期刊栏目
研究方向 页码范围 91-96
页数 6页 分类号
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.202404015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2025(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变化检测;半监督;一致性;均值教师模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
论文1v1指导