传统的话题模型假设每个文档只属于一个话题,而实际情况下一个文档往往与多个话题相关。应用LDA 模型将文档表示为多个话题的组合,并基于语言模型框架,提出了一种基于 LDA 的混合模型用于文本信息的 Ad hoc 检索。该方法将 LDA 模型与文档模型相结合,与聚类模型相比,在保持较低的计算复杂度外,具有很高的检索性能,因此更适用于大规模文档集的信息检索。
传统的话题模型假设每个文档只属于一个话题,而实际情况下一个文档往往与多个话题相关。应用LDA 模型将文档表示为多个话题的组合,并基于语言模型框架,提出了一种基于 LDA 的混合模型用于文本信息的 Ad hoc 检索。该方法将 LDA 模型与文档模型相结合,与聚类模型相比,在保持较低的计算复杂度外,具有很高的检索性能,因此更适用于大规模文档集的信息检索。