原文服务方: 信息与控制       
摘要:
本文根据支持向量机可以解决小样本学习问题的优势,再结合粗集理论对不确定性问题分析的特点,提出一种支持向量机的粗糙神经网络的构造方法.该方法引人多个类似于支持向量机的子神经网络,并将网络中的隐层单元设计成由多组粗糙神经元构成的网络单元.这种新型神经网络具有结构确定、可解释性好、计算简单、收敛速度快等特点.最后,以某型歼击机的飞机舵面故障判决为例,用仿真结果证明,本文方法是行之有效的.
推荐文章
一种基于粗糙集神经网络的分类算法
粗糙集
决策规则
隶属度
神经网络
网络收敛
蚁群算法
一种基于粗糙集的粗糙神经网络构造方法
粗糙集
神经网络
粗糙集数据分析
粗糙神经元
一种用于RBF神经网络的支持向量机与BP的混合学习算法
机器学习
支持向量机
神经网络
BP算法
一种基于多分类支持向量机的网络入侵检测方法
入侵检测
支持向量机
核函数
异构数据距离
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种支持向量机粗糙神经网络的构造与分类决策
来源期刊 信息与控制 学科
关键词 粗糙集 神经网络 支持向量机 分类
年,卷(期) 2004,(3) 所属期刊栏目 实际问题探讨
研究方向 页码范围 373-375,379
页数 4页 分类号 TP13
字数 语种 中文
DOI 10.3969/j.issn.1002-0411.2004.03.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡寿松 南京航空航天大学自动化学院 185 3001 28.0 46.0
2 肖迪 南京航空航天大学自动化学院 5 80 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (38)
参考文献  (2)
节点文献
引证文献  (4)
同被引文献  (15)
二级引证文献  (3)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粗糙集
神经网络
支持向量机
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
总被引数(次)
41289
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导