基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
超谱遥感技术的发展对遥感图像处理算法提出了新的挑战,超谱遥感图像所特有的高光谱维数,使适用于多光谱图像的算法不适合直接用于超谱图像.利用数据融合技术可以将超谱图像从高维降到低维,因而有利于图像的分析和处理.提升算法是构造第2代小波的关键技术,该文研究了其用于超谱遥感图像融合分类的可行性,利用提升算法将第1代小波改造成第2代小波,并对标准的AVIRIS超谱遥感图像实现图像融合,在融合的同时,提取图像的光谱特征用于分类, 在相同的实验标准下在像素层和特征层上分别对图像进行了第2代小波融合分类,并用分类精度对实验结果进行了客观的评价.实验结果表明,以提升算法构造的特征层小波融合分类比像素层分类精度提高了7.78%.
推荐文章
基于超像素统计量的随机森林遥感图像分类
Landsat-8
随机森林
超像素
地物覆盖
简单线性迭代聚类
基于空谱特征的核极端学习机高光谱遥感图像分类算法
局部二值模式
空谱结合
核极限学习机
高光谱遥感图像
基于蚁群算法的多光谱遥感图像分类
多光谱遥感图像
分类
光谱特征
形状特征
蚁群算法
支持向量机分类器
基于改进IHS变换的遥感图像融合新算法
IHS变换
MQPSO算法
图像融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于提升算法的超谱遥感图像融合分类研究
来源期刊 哈尔滨工程大学学报 学科 工学
关键词 超谱图像 提升算法 图像融合 图像分类
年,卷(期) 2004,(6) 所属期刊栏目
研究方向 页码范围 794-798
页数 5页 分类号 TN911.73
字数 3187字 语种 中文
DOI 10.3969/j.issn.1006-7043.2004.06.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵春晖 哈尔滨工程大学信息与通信工程学院 364 3419 27.0 39.0
2 刘春红 哈尔滨工程大学信息与通信工程学院 13 320 7.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (1)
二级引证文献  (21)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2005(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(4)
  • 引证文献(4)
  • 二级引证文献(0)
2009(2)
  • 引证文献(1)
  • 二级引证文献(1)
2010(3)
  • 引证文献(1)
  • 二级引证文献(2)
2011(6)
  • 引证文献(0)
  • 二级引证文献(6)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
超谱图像
提升算法
图像融合
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨工程大学学报
月刊
1006-7043
23-1390/U
大16开
哈尔滨市南岗区南通大街145号1号楼
14-111
1980
chi
出版文献量(篇)
5623
总下载数(次)
16
总被引数(次)
45433
论文1v1指导