原文服务方: 西安交通大学学报       
摘要:
将核学习的方法应用于自组织映射聚类中,提出了一种核自组织映射聚类算法.该算法以核函数代替原始数据在特征空间中映射值的内积,并且神经元权值向量的初始化和更新都可由其组合系数向量表示,从而获得了直观而简单的迭代公式.分析了算法中学习速率过高会降低学习稳定性、学习速率过低又会降低收敛速度等参数选择问题,给出了一组折中考虑学习稳定性和收敛速度要求的参数初始值.实验结果表明,核自组织映射聚类对于非椭圆型的类分布数据,如环形数据,聚类正确率也能够达到99.886 4%.对IRIS数据集和入侵检测报警数据的聚类也证明了核自组织映射聚类方法的良好性能.
推荐文章
基于混合聚类和自组织映射的异常检测模型
聚类
自组织映射
异常检测
信息获取
基于半监督聚元自组织映射的齿轮早期故障检测
半监督学习
聚元自组织特征映射
早期故障诊断
特征选择
核自组织映射竞争聚类
聚类算法
自组织映射
特征空间
核函数
基于自组织映射网络的油藏表征模型
油藏表征
自组织映射
聚类分析
数据挖掘
岩性识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核的自组织映射聚类
来源期刊 西安交通大学学报 学科
关键词 聚类算法 自组织映射 特征空间 核函数
年,卷(期) 2005,(12) 所属期刊栏目
研究方向 页码范围 1307-1310
页数 4页 分类号 TP181
字数 语种 中文
DOI 10.3321/j.issn:0253-987X.2005.12.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩崇昭 西安交通大学电子与信息工程学院 349 5634 35.0 59.0
2 肖云 西安交通大学电子与信息工程学院 5 72 4.0 5.0
3 王选宏 西安科技大学通信与信息工程学院 1 13 1.0 1.0
4 张俊杰 西安交通大学电子与信息工程学院 4 21 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (13)
同被引文献  (10)
二级引证文献  (3)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(2)
  • 引证文献(2)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
聚类算法
自组织映射
特征空间
核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
相关基金
国家重点基础研究发展计划(973计划)
英文译名:National Basic Research Program of China
官方网址:http://www.973.gov.cn/
项目类型:
学科类型:农业
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导