摘要:
本文首先定义关于3x+1问题(角谷猜想)的原始角谷运算和把正整数角谷化两个概念,然后研究有限连续正整数的原始角谷运算过程,概括出正整数在原始角谷运算过程中的同路性和有界性;研究原始角谷运算的数位间隔性;接着介绍覆盖,研究正整数角谷化过程的数位覆盖性;最后介绍覆盖原理,并用覆盖原理巧妙地证明了角谷猜想,得到3x+1问题的第3个证法。第1节原始角谷运算和把正整数角谷化定义1对于正整数数列1,2,3,4,5,6,7,……中的奇数,只需乘3加1,把它变成偶数;对于这个正整数数列中的偶数,就除以2,除以2,……,除以2,直到得出的结果是奇数时就不再进行除以2的运算。像这样的运算,本文把它叫做问题的原始角谷运算。任选一个正整数,对这个正整数的原始角谷运算结果再连续进行原始角谷运算,最后总可以得出“4→2→1→4→2→1→4→2→1→4→2→1→……”这个无限循环的结果。这个数学问题是一个在20世纪初起源于美国的有趣的数学游戏,以后由美洲传入了欧洲。20世纪60年代,再由日本人角谷(jiaogu)把它从欧洲传入亚洲。100多年来,世界上很多人研究了这个数学游戏。到20世纪末,数学家们用大型电子计算机,已经验证了7×1011...