基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
论述了基于支持向量机故障诊断技术的基本原理;介绍了传统的基于人工神经网络的故障诊断方法;以旋转机械故障诊断为例对两种诊断方法进行了比较,实验结果表明,与神经网络相比,基于支持向量机的故障诊断方法在训练速度、诊断精度、可靠性等方面都表现出了优越的诊断性能.
推荐文章
基于MCKD和包络谱的旋转机械故障诊断方法
旋转机械故障诊断
最大相关峭度解卷积
包络谱
最小熵解卷积
证据理论在旋转机械故障诊断中应用
多传感器
D-S证据理论
信息融合
故障诊断
基于LabVIEW和BP神经网络的旋转机械故障诊断研究
旋转机械
LabVIEW
BP神经网络
故障诊断
基于径向基神经网络的旋转机械故障诊断
RBF神经网络
故障诊断
风机
故障特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 SVM技术与ANN方法对旋转机械故障诊断性能的比较
来源期刊 电光与控制 学科 工学
关键词 支持向量机 神经网络 故障诊断
年,卷(期) 2006,(3) 所属期刊栏目 工程应用
研究方向 页码范围 72-74
页数 3页 分类号 V271.4|TP181
字数 2809字 语种 中文
DOI 10.3969/j.issn.1671-637X.2006.03.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 单甘霖 军械工程学院光学与电子工程系 113 845 15.0 23.0
2 张金泽 军械工程学院光学与电子工程系 6 60 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (4)
同被引文献  (3)
二级引证文献  (16)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(4)
  • 引证文献(0)
  • 二级引证文献(4)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
支持向量机
神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电光与控制
月刊
1671-637X
41-1227/TN
大16开
河南省洛阳市017信箱16分箱
1970
chi
出版文献量(篇)
4517
总下载数(次)
11
论文1v1指导