基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
回归支持向量机的ε不敏感损失函数的参数寻优是一个重要的问题,它与支持向量机的行为特性有紧密关系.本文给出了一种基于粒子群优化算法的、对ε不敏感损失函数的ε参数寻优的方法,仿真结果表明:采用基于粒子群优化算法的寻优方法寻找ε参数,需要重复训练回归支持向量机模型的次数明显小于格点搜索方法,节省了大量的时间并且能找到较优的ε值.
推荐文章
氧乐果合成过程的PSO-回归BP网络建模方法
粒子群算法
回归BP网络
氧乐果合成
温度对象
基于改进的PSO优化SVM火灾火焰识别算法研究
火焰检测
支持向量机
粒子群算法
参数优化
用于变压器DGA故障诊断的改进PSO优化SVM算法研究
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
基于改进PSO-SVM算法的电能质量扰动分类
支持向量机(SVM)
小波变换
粒子群算法(PSO)
电能质量
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PSO-ε-SVM的回归算法
来源期刊 华东理工大学学报(自然科学版) 学科 医学
关键词 回归支持向量机 粒子群优化算法 ε不敏感损失函数 格点搜索
年,卷(期) 2006,(7) 所属期刊栏目
研究方向 页码范围 872-875
页数 4页 分类号 R318
字数 3235字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (9)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
回归支持向量机
粒子群优化算法
ε不敏感损失函数
格点搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东理工大学学报(自然科学版)
双月刊
1006-3080
31-1691/TQ
16开
上海市梅陇路130号
4-382
1957
chi
出版文献量(篇)
3399
总下载数(次)
2
总被引数(次)
27146
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导