作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
给出了改进的BP网络和RBF网络的构造过程和训练方法.在改进的BP网络中不仅加入了动量项和变步长法,而且在模型中合理地考虑了影响负荷变化的主要气象因素,使其能够适应天气的变化.在RBF网络中,为了克服传统K均值聚类法局部寻优的缺陷,采用了正交最小二乘法选取RBF中心.利用改进的BP网络和RBF网络进行了短期电力负荷预测,并对训练的收敛速度和预测精度进行了分析.比较两种模型,RBF网络比BP网络更具有实用性和可开发性.
推荐文章
人工神经网络在电力系统短期负荷预测中的应用
多层神经网络
BP模型
负荷预测
基于 BP 神经网络系统的短期电力负荷预测
电力负荷预测
神经网络
BP 算法
MATLAB
误差分析
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 神经网络在短期电力负荷预测中的应用
来源期刊 沈阳工业大学学报 学科 工学
关键词 电力系统 人工神经网络 BP网络 RBF网络 电力负荷预测
年,卷(期) 2006,(1) 所属期刊栏目 电气工程
研究方向 页码范围 41-44
页数 4页 分类号 TM715
字数 3309字 语种 中文
DOI 10.3969/j.issn.1000-1646.2006.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林莘 沈阳工业大学电气工程学院 194 2544 28.0 41.0
2 卢芸 沈阳工业大学电气工程学院 12 136 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (45)
参考文献  (6)
节点文献
引证文献  (11)
同被引文献  (16)
二级引证文献  (12)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(2)
  • 二级引证文献(1)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
电力系统
人工神经网络
BP网络
RBF网络
电力负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳工业大学学报
双月刊
1000-1646
21-1189/T
大16开
沈阳市铁西区南十三路1号
8-165
1964
chi
出版文献量(篇)
2983
总下载数(次)
5
总被引数(次)
22269
论文1v1指导