基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对三维模型的分类问题,提出了一种适应性加权非对称AdaBoost隐马尔克夫模型(HMM)分类算法.算法中提出了由三维模型表面的绝对法向量表示的两种新特征,将经过归一化和姿态调整的三维模型划分为若干部分,各部分对应HMM的一个状态,对各部分提取特征并用主成分分析(PCA)降维,对模型的4种特征对应的弱分类器使用非对称AdaBoost算法进行boosting.HMM的结构及参数初始值由模型姿势调整的可能形式及观测顺序确定,训练过程中参数用期望最大化方法计算,最后使用加权相似度计算对三维模型分类.分析及试验结果表明,与基于分布函数的分类算法相比,该算法明显提高了正确率.适应性加权后,分类正确率可进一步提高.
推荐文章
基于自适应加权中值滤波的二维Otsu图像分割算法
加权中值滤波
二维Otsu
图像分割
阈值选取
三维非对称斜劈高速流动计算方法研究
RANS
高速流动
非对称
网格生成准则
计算策略
基于KNN的特征自适应加权自然图像分类研究
K-近邻算法
基因算法
自然图像分类
特征加权
非对称扰动下热轧铝带跑偏过程三维数值模拟
热轧
铝板带
板带跑偏
数值模拟
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于适应加权非对称AdaBoost HMM的三维模型分类算法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 三维模型分类 隐马尔克夫模型 非对称Adaboost
年,卷(期) 2006,(8) 所属期刊栏目 自动化技术、计算机技术
研究方向 页码范围 1300-1305
页数 6页 分类号 TP31
字数 5720字 语种 中文
DOI 10.3785/j.issn.1008-973X.2006.08.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 董金祥 浙江大学计算机科学与技术学院 165 2786 31.0 42.0
2 尹建伟 浙江大学计算机科学与技术学院 66 1037 17.0 30.0
3 冯志林 浙江大学计算机科学与技术学院 11 146 7.0 11.0
7 刘小明 浙江大学计算机科学与技术学院 8 379 6.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (7)
参考文献  (4)
节点文献
引证文献  (13)
同被引文献  (10)
二级引证文献  (15)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(4)
  • 引证文献(4)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(7)
  • 引证文献(0)
  • 二级引证文献(7)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
三维模型分类
隐马尔克夫模型
非对称Adaboost
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导