原文服务方: 计算机应用研究       
摘要:
针对自然图像类型广泛、结构复杂、分类精度不高的实际问题,提出了一种为自然图像不同特征自动加权值的K-近邻(K-nearest neighbors,KNN)分类方法。通过分析自然图像的不同特征对于分类结果的影响,采用基因遗传算法求得一组最优分类权值向量解,利用该最优权值对自然图像纹理和颜色两个特征分别进行加权,最后用自适应加权K-近邻算法实现对自然图像的分类。实验结果表明,在用户给定分类精度需求和低时间复杂度的约束下,算法能快速、高精度地进行自然图像分类。提出的自适应加权K-近邻分类方法对于门类繁多的自然图
推荐文章
图像快速自适应加权中值滤波
中值滤波
自适应加权
统计直方图
基于可分离性判据的自适应加权纹理图像分割
纹理特征
自适应加权
共生矩阵
可分离性
基于自适应加权中值滤波的二维Otsu图像分割算法
加权中值滤波
二维Otsu
图像分割
阈值选取
一种基于区域特征动态加权的自适应图像融合方法
图像融合
区域特征
动态加权
自适应融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于KNN的特征自适应加权自然图像分类研究
来源期刊 计算机应用研究 学科
关键词 K-近邻算法 基因算法 自然图像分类 特征加权
年,卷(期) 2014,(3) 所属期刊栏目 图形图像技术
研究方向 页码范围 957-960
页数 4页 分类号 TP181|TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2014.03.077
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (404)
参考文献  (10)
节点文献
引证文献  (25)
同被引文献  (46)
二级引证文献  (21)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(5)
  • 引证文献(4)
  • 二级引证文献(1)
2016(8)
  • 引证文献(6)
  • 二级引证文献(2)
2017(7)
  • 引证文献(3)
  • 二级引证文献(4)
2018(13)
  • 引证文献(7)
  • 二级引证文献(6)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
K-近邻算法
基因算法
自然图像分类
特征加权
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导