基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于支持向量机学习的模糊分类系统模型,通过将支持向量机映射成等价的模糊分类系统,支持向量机的稀疏性表示等特性使得相应的模糊分类系统避免了"维数灾难"问题,并具有良好的泛化能力.另一方面,模糊系统的一些理论和应用成果也可用来进一步改善分类系统的性能.本文根据模糊集合的贴近度概念对模糊系统的语言变量进行约简,合并冗余的和不一致的模糊规则,然后采用粒子群优化方法改善模糊分类系统性能.该方法增强了系统的泛化能力,并可以理解为解决支持向量机中难以确定的系统参数问题的一种辅助方法.实验结果表明了该方法的可行性和有效性.
推荐文章
一种新的模糊支持向量机多分类算法
支持向量机
模糊支持向量机
一对多组合
隶属函数
多分类算法
一种新的模糊支持向量机算法
隶属度
支持向量机
模糊K近邻
模糊支持向量机
一种改进的模糊多类支持向量机算法
支持向量机
统计学习理论
多类分类
模糊隶属函数
基于混合模糊隶属度的模糊双支持向量机研究
模糊隶属度
支持向量机
双支持向量机
模式分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于支持向量机的模糊分类系统研究
来源期刊 小型微型计算机系统 学科 工学
关键词 支持向量机 模糊系统 规则约简 粒子群优化
年,卷(期) 2006,(4) 所属期刊栏目 算法研究
研究方向 页码范围 701-705
页数 5页 分类号 TP183
字数 5247字 语种 中文
DOI 10.3969/j.issn.1000-1220.2006.04.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄艳新 吉林大学计算机科学与技术学院 13 209 9.0 13.0
2 王岩 吉林大学计算机科学与技术学院 133 735 15.0 21.0
3 周春光 吉林大学计算机科学与技术学院 161 2128 25.0 39.0
4 邹淑雪 吉林大学计算机科学与技术学院 13 120 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (3)
同被引文献  (2)
二级引证文献  (28)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(7)
  • 引证文献(0)
  • 二级引证文献(7)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
模糊系统
规则约简
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导