作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于数据对象间的关联限制定义了类间关联系数,本文提出了两阶段的限制层次聚类算法TCCL.算法分为两个阶段,第一阶段主要依据数据对象的自然分布,基于数据对象间的距离把它们合并入一个个小类;在第二阶段,依据背景知识,基于类间关联系数来实现小类的进一步合并.一些实际数据集的实验结果表明,TCCL可以比较有效地利用所给关联限制来改善聚类效果.
推荐文章
一种新的两阶段FCM聚类算法
模糊聚类
模糊C均值算法
初始聚类中心
两阶段聚类
基于聚类划分的两阶段离群点检测算法
层次聚类
K-均值
信息熵
距离和
离群点检测
基于K均值和aiNet的两阶段文本聚类算法
文本聚类
向量空间模型
人工免疫网
k均值聚类算法
SOM+K-means两阶段聚类算法及其应用
聚类
自组织神经网络
K-means
细分
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种两阶段的限制层次聚类算法
来源期刊 计算机工程与科学 学科 工学
关键词 聚类分析 半监督学习 层次聚类
年,卷(期) 2006,(7) 所属期刊栏目 算法研究
研究方向 页码范围 70-72
页数 3页 分类号 TP301.6
字数 3048字 语种 中文
DOI 10.3969/j.issn.1007-130X.2006.07.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何振峰 福州大学数学与计算机科学学院 34 74 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (5)
参考文献  (2)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类分析
半监督学习
层次聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导