基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是在统计学理论基础上提出的一种新的机器学习方法,由于其出色的学习性能,该技术已成为机器学习界的研究热点,并成功地应用在文本分类、图像识别、生物信息处理等领域.这里简要介绍了支持向量机算法及其应用,并且讨论了其未来的发展方向.
推荐文章
一种新的模糊支持向量机多分类算法
支持向量机
模糊支持向量机
一对多组合
隶属函数
多分类算法
一种基于PSO的混合核支持向量机算法
支持向量机
全局核函数
局部核函数
混合核函数
粒子群优化算法
一种新的基于ART的支持向量机多类分类方法
支持向量机(SVM)
多类分类
核函数
自适应共振理论(ART)网络
一种基于聚类核的半监督支持向量机分类方法
聚类核
聚类假设
半监督支持向量机
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于支持向量机的分类算法
来源期刊 山西电子技术 学科 工学
关键词 支持向量机 训练算法
年,卷(期) 2007,(3) 所属期刊栏目 应用实践
研究方向 页码范围 17-18,25
页数 3页 分类号 TP393
字数 2856字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹四清 中北大学电子与计算机科学技术学院 23 77 5.0 6.0
2 王晓霞 中北大学电子与计算机科学技术学院 9 31 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (58)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (9)
二级引证文献  (7)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
训练算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西电子技术
双月刊
1674-4578
14-1214/TN
大16开
山西省太原市平阳路173号
1973
chi
出版文献量(篇)
4068
总下载数(次)
13
总被引数(次)
10437
论文1v1指导